Papers
Topics
Authors
Recent
2000 character limit reached

Submodular Rank Aggregation on Score-based Permutations for Distributed Automatic Speech Recognition

Published 27 Jan 2020 in eess.AS, cs.LG, cs.NE, and cs.SD | (2001.10529v1)

Abstract: Distributed automatic speech recognition (ASR) requires to aggregate outputs of distributed deep neural network (DNN)-based models. This work studies the use of submodular functions to design a rank aggregation on score-based permutations, which can be used for distributed ASR systems in both supervised and unsupervised modes. Specifically, we compose an aggregation rank function based on the Lovasz Bregman divergence for setting up linear structured convex and nested structured concave functions. The algorithm is based on stochastic gradient descent (SGD) and can obtain well-trained aggregation models. Our experiments on the distributed ASR system show that the submodular rank aggregation can obtain higher speech recognition accuracy than traditional aggregation methods like Adaboost. Code is available online~\footnote{https://github.com/uwjunqi/Subrank}.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.