Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Coagent Networks Revisited (2001.10474v3)

Published 28 Jan 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Coagent networks formalize the concept of arbitrary networks of stochastic agents that collaborate to take actions in a reinforcement learning environment. Prominent examples of coagent networks in action include approaches to hierarchical reinforcement learning (HRL), such as those using options, which attempt to address the exploration exploitation trade-off by introducing abstract actions at different levels by sequencing multiple stochastic networks within the HRL agents. We first provide a unifying perspective on the many diverse examples that fall under coagent networks. We do so by formalizing the rules of execution in a coagent network, enabled by the novel and intuitive idea of execution paths in a coagent network. Motivated by parameter sharing in the hierarchical option-critic architecture, we revisit the coagent network theory and achieve a much shorter proof of the policy gradient theorem using our idea of execution paths, without any assumption on how parameters are shared among coagents. We then generalize our setting and proof to include the scenario where coagents act asynchronously. This new perspective and theorem also lead to more mathematically accurate and performant algorithms than those in the existing literature. Lastly, by running nonstationary RL experiments, we survey the performance and properties of different generalizations of option-critic models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.