Papers
Topics
Authors
Recent
2000 character limit reached

Scene Text Recognition With Finer Grid Rectification

Published 26 Jan 2020 in cs.CV | (2001.09389v1)

Abstract: Scene Text Recognition is a challenging problem because of irregular styles and various distortions. This paper proposed an end-to-end trainable model consists of a finer rectification module and a bidirectional attentional recognition network(Firbarn). The rectification module adopts finer grid to rectify the distorted input image and the bidirectional decoder contains only one decoding layer instead of two separated one. Firbarn can be trained in a weak supervised way, only requiring the scene text images and the corresponding word labels. With the flexible rectification and the novel bidirectional decoder, the results of extensive evaluation on the standard benchmarks show Firbarn outperforms previous works, especially on irregular datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.