Papers
Topics
Authors
Recent
2000 character limit reached

Interoperable GPU Kernels as Latency Improver for MEC (2001.09352v1)

Published 25 Jan 2020 in cs.DC and cs.GR

Abstract: Mixed reality (MR) applications are expected to become common when 5G goes mainstream. However, the latency requirements are challenging to meet due to the resources required by video-based remoting of graphics, that is, decoding video codecs. We propose an approach towards tackling this challenge: a client-server implementation for transacting intermediate representation (IR) between a mobile UE and a MEC server instead of video codecs and this way avoiding video decoding. We demonstrate the ability to address latency bottlenecks on edge computing workloads that transact graphics. We select SPIR-V compatible GPU kernels as the intermediate representation. Our approach requires know-how in GPU architecture and GPU domain-specific languages (DSLs), but compared to video-based edge graphics, it decreases UE device delay by sevenfold. Further, we find that due to low cold-start times on both UEs and MEC servers, application migration can happen in milliseconds. We imply that graphics-based location-aware applications, such as MR, can benefit from this kind of approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.