Papers
Topics
Authors
Recent
2000 character limit reached

Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs

Published 23 Jan 2020 in math.NA, cs.NA, and math.FA | (2001.09000v1)

Abstract: In this work, we investigate the numerical approximation of the second order non-autonomous semilnear parabolic partial differential equation (PDE) using the finite element method. To the best of our knowledge, only the linear case is investigated in the literature. Using an approach based on evolution operator depending on two parameters, we obtain the error estimate of the scheme toward the mild solution of the PDE under polynomial growth condition of the nonlinearity. Our convergence rate are obtain for smooth and non-smooth initial data and is similar to that of the autonomous case. Our convergence result for smooth initial data is very important in numerical analysis. For instance, it is one step forward in approximating non-autonomous stochastic partial differential equations by the finite element method. In addition, we provide realistic conditions on the nonlinearity, appropriated to achieve optimal convergence rate without logarithmic reduction by exploiting the smooth properties of the two parameters evolution operator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.