Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian estimates of transmission line outage rates that consider line dependencies (2001.08681v1)

Published 23 Jan 2020 in stat.AP, cs.SY, eess.SY, and physics.soc-ph

Abstract: Transmission line outage rates are fundamental to power system reliability analysis. Line outages are infrequent, occurring only about once a year, so outage data are limited. We propose a Bayesian hierarchical model that leverages line dependencies to better estimate outage rates of individual transmission lines from limited outage data. The Bayesian estimates have a lower standard deviation than estimating the outage rates simply by dividing the number of outages by the number of years of data, especially when the number of outages is small. The Bayesian model produces more accurate individual line outage rates, as well as estimates of the uncertainty of these rates. Better estimates of line outage rates can improve system risk assessment, outage prediction, and maintenance scheduling.

Citations (10)

Summary

We haven't generated a summary for this paper yet.