Papers
Topics
Authors
Recent
2000 character limit reached

TEAM: An Taylor Expansion-Based Method for Generating Adversarial Examples

Published 23 Jan 2020 in cs.LG and stat.ML | (2001.08389v2)

Abstract: Although Deep Neural Networks(DNNs) have achieved successful applications in many fields, they are vulnerable to adversarial examples.Adversarial training is one of the most effective methods to improve the robustness of DNNs, and it is generally considered as solving a saddle point problem that minimizes risk and maximizes perturbation.Therefore, powerful adversarial examples can effectively replicate the situation of perturbation maximization to solve the saddle point problem.The method proposed in this paper approximates the output of DNNs in the input neighborhood by using the Taylor expansion, and then optimizes it by using the Lagrange multiplier method to generate adversarial examples. If it is used for adversarial training, the DNNs can be effectively regularized and the defects of the model can be improved.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.