Factorization algebras and abelian CS/WZW-type correspondences (2001.07888v5)
Abstract: We develop a method of quantization for free field theories on manifolds with boundary where the bulk theory is topological in the direction normal to the boundary and a local boundary condition is imposed. Our approach is within the Batalin-Vilkovisky formalism. At the level of observables, the construction produces a stratified factorization algebra that in the bulk recovers the factorization algebra developed by Costello and Gwilliam. The factorization algebra on the boundary stratum enjoys a perturbative bulk-boundary correspondence with this bulk factorization algebra. A central example is the factorization algebra version of the abelian Chern-Simons/Wess-Zumino-Witten correspondence, but we examine higher dimensional generalizations that are related to holomorphic truncations of string theory and $M$-theory and involve intermediate Jacobians.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.