Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Temporal Action Localization Using Deep Metric Learning (2001.07793v1)

Published 21 Jan 2020 in cs.CV and cs.LG

Abstract: Temporal action localization is an important step towards video understanding. Most current action localization methods depend on untrimmed videos with full temporal annotations of action instances. However, it is expensive and time-consuming to annotate both action labels and temporal boundaries of videos. To this end, we propose a weakly supervised temporal action localization method that only requires video-level action instances as supervision during training. We propose a classification module to generate action labels for each segment in the video, and a deep metric learning module to learn the similarity between different action instances. We jointly optimize a balanced binary cross-entropy loss and a metric loss using a standard backpropagation algorithm. Extensive experiments demonstrate the effectiveness of both of these components in temporal localization. We evaluate our algorithm on two challenging untrimmed video datasets: THUMOS14 and ActivityNet1.2. Our approach improves the current state-of-the-art result for THUMOS14 by 6.5% mAP at IoU threshold 0.5, and achieves competitive performance for ActivityNet1.2.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ashraful Islam (8 papers)
  2. Richard J. Radke (16 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.