Papers
Topics
Authors
Recent
2000 character limit reached

Massif: Interactive Interpretation of Adversarial Attacks on Deep Learning

Published 21 Jan 2020 in cs.LG, cs.CR, and stat.ML | (2001.07769v3)

Abstract: Deep neural networks (DNNs) are increasingly powering high-stakes applications such as autonomous cars and healthcare; however, DNNs are often treated as "black boxes" in such applications. Recent research has also revealed that DNNs are highly vulnerable to adversarial attacks, raising serious concerns over deploying DNNs in the real world. To overcome these deficiencies, we are developing Massif, an interactive tool for deciphering adversarial attacks. Massif identifies and interactively visualizes neurons and their connections inside a DNN that are strongly activated or suppressed by an adversarial attack. Massif provides both a high-level, interpretable overview of the effect of an attack on a DNN, and a low-level, detailed description of the affected neurons. These tightly coupled views in Massif help people better understand which input features are most vulnerable or important for correct predictions.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.