Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Non-loose negative torus knots (2001.07681v4)

Published 21 Jan 2020 in math.GT and math.SG

Abstract: We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$. Additionally, we show that the strongly non-loose transverse realizations $T$ are classified by their non-zero invariants $\mathfrak T(T)$ in the minus version of the knot Floer homology. However, not all the elements of $HFK-(T_{(p,q)})$ can be realized. Along the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.