Papers
Topics
Authors
Recent
2000 character limit reached

Generating Sense Embeddings for Syntactic and Semantic Analogy for Portuguese

Published 21 Jan 2020 in cs.CL | (2001.07574v1)

Abstract: Word embeddings are numerical vectors which can represent words or concepts in a low-dimensional continuous space. These vectors are able to capture useful syntactic and semantic information. The traditional approaches like Word2Vec, GloVe and FastText have a strict drawback: they produce a single vector representation per word ignoring the fact that ambiguous words can assume different meanings. In this paper we use techniques to generate sense embeddings and present the first experiments carried out for Portuguese. Our experiments show that sense vectors outperform traditional word vectors in syntactic and semantic analogy tasks, proving that the language resource generated here can improve the performance of NLP tasks in Portuguese.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.