Papers
Topics
Authors
Recent
2000 character limit reached

On the Stability of the Endemic Equilibrium of A Discrete-Time Networked Epidemic Model

Published 21 Jan 2020 in eess.SY and cs.SY | (2001.07451v1)

Abstract: Networked epidemic models have been widely adopted to describe propagation phenomena. The endemic equilibrium of these models is of great significance in the field of viral marketing, innovation dissemination, and information diffusion. However, its stability conditions have not been fully explored. In this paper we study the stability of the endemic equilibrium of a networked Susceptible-Infected-Susceptible (SIS) epidemic model with heterogeneous transition rates in a discrete-time manner. We show that the endemic equilibrium, if it exists, is asymptotically stable for any nontrivial initial condition. Under mild assumptions on initial conditions, we further prove that during the spreading process there exists no overshoot with respect to the endemic equilibrium. Finally, we conduct numerical experiments on real-world networks to demonstrate our results.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.