2000 character limit reached
Construction of Simple Modules over the Quantum Affine Space (2001.07432v2)
Published 21 Jan 2020 in math.RT and math.QA
Abstract: The coordinate ring $\mathcal{O}{\mathbf{q}}(\mathbb{K}n)$ of quantum affine space is the $\mathbb{K}$-algebra presented by generators $x_1,\cdots ,x_n$ and relations $x_ix_j=q{ij}x_jx_i$ for all $i,j$. We construct simple $\mathcal{O}{\mathbf{q}}(\mathbb{K}n)$-modules in a more general setting where the entries $q{ij}$ lie in a torsion subgroup of $\mathbb{K}*$ and show analogous results hold as in single parameter case.