Papers
Topics
Authors
Recent
2000 character limit reached

Nested-Wasserstein Self-Imitation Learning for Sequence Generation

Published 20 Jan 2020 in cs.CL and cs.LG | (2001.06944v1)

Abstract: Reinforcement learning (RL) has been widely studied for improving sequence-generation models. However, the conventional rewards used for RL training typically cannot capture sufficient semantic information and therefore render model bias. Further, the sparse and delayed rewards make RL exploration inefficient. To alleviate these issues, we propose the concept of nested-Wasserstein distance for distributional semantic matching. To further exploit it, a novel nested-Wasserstein self-imitation learning framework is developed, encouraging the model to exploit historical high-rewarded sequences for enhanced exploration and better semantic matching. Our solution can be understood as approximately executing proximal policy optimization with Wasserstein trust-regions. Experiments on a variety of unconditional and conditional sequence-generation tasks demonstrate the proposed approach consistently leads to improved performance.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.