Papers
Topics
Authors
Recent
Search
2000 character limit reached

Limit theorems for topological invariants of the dynamic multi-parameter simplicial complex

Published 19 Jan 2020 in math.PR | (2001.06860v2)

Abstract: Topological study of existing random simplicial complexes is non-trivial and has led to several seminal works. However, the applicability of such studies is limited since the randomness there is usually governed by a single parameter. With this in mind, we focus here on the topology of the recently proposed multi-parameter random simplicial complex and, more importantly, of its dynamic analogue that we introduce here. In this dynamic setup, the temporal evolution of simplices is determined by stationary and possibly non-Markovian processes with a renewal structure. The dynamic versions of the clique complex and the Linial-Meshulum complex are special cases of our setup. Our key result concerns the regime where face-counts of a particular dimension dominate. We show that the Betti numbers corresponding to this dimension and the Euler characteristic satisfy functional strong law of large numbers and functional central limit theorems. Surprisingly, in the latter result, the limiting Gaussian process depends only upon the dynamics in the smallest non-trivial dimension.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.