Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based Surrogate Model Via Uncertainty Quantification

Published 19 Jan 2020 in stat.ML, cs.LG, and stat.ME | (2001.06858v1)

Abstract: Global optimization of expensive functions has important applications in physical and computer experiments. It is a challenging problem to develop efficient optimization scheme, because each function evaluation can be costly and the derivative information of the function is often not available. We propose a novel global optimization framework using adaptive Radial Basis Functions (RBF) based surrogate model via uncertainty quantification. The framework consists of two iteration steps. It first employs an RBF-based Bayesian surrogate model to approximate the true function, where the parameters of the RBFs can be adaptively estimated and updated each time a new point is explored. Then it utilizes a model-guided selection criterion to identify a new point from a candidate set for function evaluation. The selection criterion adopted here is a sample version of the expected improvement (EI) criterion. We conduct simulation studies with standard test functions, which show that the proposed method has some advantages, especially when the true surface is not very smooth. In addition, we also propose modified approaches to improve the search performance for identifying global optimal points and to deal with the higher dimension scenarios.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.