On the sets of lengths of Puiseux monoids generated by multiple geometric sequences (2001.06158v2)
Abstract: In this paper, we study some of the factorization aspects of rational multicyclic monoids, that is, additive submonoids of the nonnegative rational numbers generated by multiple geometric sequences. In particular, we provide a complete description of the rational multicyclic monoids $M$ that are hereditarily atomic (i.e., every submonoid of $M$ is atomic). Additionally, we show that the sets of lengths of certain rational multicyclic monoids are finite unions of multidimensional arithmetic progressions, while their unions satisfy the Structure Theorem for Unions of Sets of Lengths. Finally, we realize arithmetic progressions as the sets of distances of some additive submonoids of the nonnegative rational numbers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.