Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Algorithm for Designing Optimal CRCs for Tail-Biting Convolutional Codes (2001.06029v2)

Published 16 Jan 2020 in cs.IT and math.IT

Abstract: Cyclic redundancy check (CRC) codes combined with convolutional codes yield a powerful concatenated code that can be efficiently decoded using list decoding. To help design such systems, this paper presents an efficient algorithm for identifying the distance-spectrum-optimal (DSO) CRC polynomial for a given tail-biting convolutional code (TBCC) when the target undetected error rate (UER) is small. Lou et al. found that the DSO CRC design for a given zero-terminated convolutional code under low UER is equivalent to maximizing the undetected minimum distance (the minimum distance of the concatenated code). This paper applies the same principle to design the DSO CRC for a given TBCC under low target UER. Our algorithm is based on partitioning the tail-biting trellis into several disjoint sets of tail-biting paths that are closed under cyclic shifts. This paper shows that the tail-biting path in each set can be constructed by concatenating the irreducible error events (IEEs) and circularly shifting the resultant path. This motivates an efficient collection algorithm that aims at gathering IEEs, and a search algorithm that reconstructs the full list of error events with bounded distance of interest, which can be used to find the DSO CRC. Simulation results show that DSO CRCs can significantly outperform suboptimal CRCs in the low UER regime.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube