Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised and Unsupervised Learning of Parameterized Color Enhancement (2001.05843v1)

Published 30 Dec 2019 in cs.CV

Abstract: We treat the problem of color enhancement as an image translation task, which we tackle using both supervised and unsupervised learning. Unlike traditional image to image generators, our translation is performed using a global parameterized color transformation instead of learning to directly map image information. In the supervised case, every training image is paired with a desired target image and a convolutional neural network (CNN) learns from the expert retouched images the parameters of the transformation. In the unpaired case, we employ two-way generative adversarial networks (GANs) to learn these parameters and apply a circularity constraint. We achieve state-of-the-art results compared to both supervised (paired data) and unsupervised (unpaired data) image enhancement methods on the MIT-Adobe FiveK benchmark. Moreover, we show the generalization capability of our method, by applying it on photos from the early 20th century and to dark video frames.

Citations (23)

Summary

We haven't generated a summary for this paper yet.