Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic 3D Multi-Object Tracking for Autonomous Driving (2001.05673v1)

Published 16 Jan 2020 in cs.CV and cs.RO

Abstract: 3D multi-object tracking is a key module in autonomous driving applications that provides a reliable dynamic representation of the world to the planning module. In this paper, we present our on-line tracking method, which made the first place in the NuScenes Tracking Challenge, held at the AI Driving Olympics Workshop at NeurIPS 2019. Our method estimates the object states by adopting a Kalman Filter. We initialize the state covariance as well as the process and observation noise covariance with statistics from the training set. We also use the stochastic information from the Kalman Filter in the data association step by measuring the Mahalanobis distance between the predicted object states and current object detections. Our experimental results on the NuScenes validation and test set show that our method outperforms the AB3DMOT baseline method by a large margin in the Average Multi-Object Tracking Accuracy (AMOTA) metric.

Citations (134)

Summary

We haven't generated a summary for this paper yet.