Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Coexistence of Stability and Incentive Compatibility in Fractional Matchings

Published 16 Jan 2020 in cs.GT | (2001.05652v2)

Abstract: Stable matchings have been studied extensively in social choice literature. The focus has been mostly on integral matchings, in which the nodes on the two sides are wholly matched. A fractional matching, which is a convex combination of integral matchings, is a natural extension of integral matchings. The topic of stability of fractional matchings has started receiving attention only very recently. Further, incentive compatibility in the context of fractional matchings has received very little attention. With this as the backdrop, our paper studies the important topic of incentive compatibility of mechanisms to find stable fractional matchings. We work with preferences expressed in the form of cardinal utilities. Our first result is an impossibility result that there are matching instances for which no mechanism that produces a stable fractional matching can be incentive compatible or even approximately incentive compatible. This provides the motivation to seek special classes of matching instances for which there exist incentive compatible mechanisms that produce stable fractional matchings. Our study leads to a class of matching instances that admit unique stable fractional matchings. We first show that a unique stable fractional matching for a matching instance exists if and only if the given matching instance satisfies the conditional mutual first preference (CMFP) property. To this end, we provide a polynomial-time algorithm that makes ingenious use of envy-graphs to find a non-integral stable matching whenever the preferences are strict and the given instance is not a CMFP matching instance. For this class of CMFP matching instances, we prove that every mechanism that produces the unique stable fractional matching is (a) incentive compatible and further (b) resistant to coalitional manipulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.