Papers
Topics
Authors
Recent
2000 character limit reached

Random walk algorithm for the Dirichlet problem for parabolic integro-differential equation

Published 15 Jan 2020 in math.NA, cs.NA, and math.PR | (2001.05531v1)

Abstract: We consider stochastic differential equations driven by a general L\'evy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solution of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump-adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.