Papers
Topics
Authors
Recent
2000 character limit reached

A Tree Adjoining Grammar Representation for Models Of Stochastic Dynamical Systems

Published 15 Jan 2020 in eess.SY, cs.CL, cs.NE, and cs.SY | (2001.05320v2)

Abstract: Model structure and complexity selection remains a challenging problem in system identification, especially for parametric non-linear models. Many Evolutionary Algorithm (EA) based methods have been proposed in the literature for estimating model structure and complexity. In most cases, the proposed methods are devised for estimating structure and complexity within a specified model class and hence these methods do not extend to other model structures without significant changes. In this paper, we propose a Tree Adjoining Grammar (TAG) for stochastic parametric models. TAGs can be used to generate models in an EA framework while imposing desirable structural constraints and incorporating prior knowledge. In this paper, we propose a TAG that can systematically generate models ranging from FIRs to polynomial NARMAX models. Furthermore, we demonstrate that TAGs can be easily extended to more general model classes, such as the non-linear Box-Jenkins model class, enabling the realization of flexible and automatic model structure and complexity selection via EA.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.