Papers
Topics
Authors
Recent
Search
2000 character limit reached

On purely-prime ideals with applications

Published 14 Jan 2020 in math.AC | (2001.04823v2)

Abstract: In this paper, new algebraic and topological results on purely-prime ideals of a commutative ring (pure spectrum) are obtained. Especially, Grothendieck type theorem is obtained which states that there is a canonical correspondence between the idempotents of a ring and the clopens of its pure spectrum. It is also proved that a given ring is a Gelfand ring iff its maximal spectrum equipped with the induced Zariski topology is homeomorphic to its pure spectrum. Then as an application, it is deduced that a ring is zero dimensional iff its prime spectrum and pure spectrum are isomorphic. Dually, it is shown that a given ring is a reduced mp-ring iff its minimal spectrum equipped with the induced flat topology and its pure spectrum are the same. Finally, the new notion of semi-Noetherian ring is introduced and Cohen type theorem is proved.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.