Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Chance Constrained Covariance Control for Linear Stochastic Systems With Output Feedback (2001.04544v2)

Published 13 Jan 2020 in math.OC

Abstract: We consider the problem of steering, via output feedback, the state distribution of a discrete-time, linear stochastic system from an initial Gaussian distribution to a terminal Gaussian distribution with prescribed mean and maximum covariance, subject to probabilistic path constraints on the state. The filtered state is obtained via a Kalman filter, and the problem is formulated as a deterministic convex program in terms of the distribution of the filtered state. We observe that, in the presence of constraints on the state covariance, and in contrast to classical Linear Quadratic Gaussian (LQG) control, the optimal feedback control depends on both the process noise and the observation model. The effectiveness of the proposed approach is verified using a numerical example.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.