Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the extremal compatible linear connection of a Randers space (2001.04389v1)

Published 13 Jan 2020 in math.DG

Abstract: A linear connection on a Finsler manifold is called compatible to the metric if its parallel transports preserve the Finslerian length of tangent vectors. Generalized Berwald manifolds are Finsler manifolds equipped with a compatible linear connection. Since the compatibility to the Finslerian metric does not imply the unicity of the linear connection in general, the first step of checking the existence of compatible linear connections on a Finsler manifold is to choose the best one to look for. A reasonable choice is introduced in \cite{V14} called the extremal compatible linear connection, which has torsion of minimal norm at each point. Randers metrics are special Finsler metrics that can be written as the sum of a Riemannian metric and a 1-form (they are "translates" of Riemannian metrics). In this paper, we investigate the compatibility equations for a linear connection to a Randers metric. Since a compatible linear connection is uniquely determined by its torsion, we transform the compatibility equations by taking the torsion components as variables. We determine when these equations have solutions, i.e. when the Randers space becomes a generalized Berwald space admitting a compatible linear connection. Describing all of them, we can select the extremal connection with the norm minimizing property. As a consequence, we obtain the characterization theorem in \cite{Vin1}: a Randers space is a non-Riemannian generalized Berwald space if and only if the norm of the perturbating term with respect to the Riemannian part of the metric is a positive constant.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.