Papers
Topics
Authors
Recent
2000 character limit reached

Balancing Accuracy and Diversity in Recommendations using Matrix Completion Framework

Published 11 Dec 2019 in cs.IR and cs.LG | (2001.04349v1)

Abstract: Design of recommender systems aimed at achieving high prediction accuracy is a widely researched area. However, several studies have suggested the need for diversified recommendations, with acceptable level of accuracy, to avoid monotony and improve customers experience. However, increasing diversity comes with an associated reduction in recommendation accuracy; thereby necessitating an optimum tradeoff between the two. In this work, we attempt to achieve accuracy vs diversity balance, by exploiting available ratings and item metadata, through a single, joint optimization model built over the matrix completion framework. Most existing works, unlike our formulation, propose a 2 stage model, a heuristic item ranking scheme on top of an existing collaborative filtering technique. Experimental evaluation on a movie recommender system indicates that our model achieves higher diversity for a given drop in accuracy as compared to existing state of the art techniques.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.