Papers
Topics
Authors
Recent
2000 character limit reached

Attention Flow: End-to-End Joint Attention Estimation

Published 12 Jan 2020 in cs.CV | (2001.03960v1)

Abstract: This paper addresses the problem of understanding joint attention in third-person social scene videos. Joint attention is the shared gaze behaviour of two or more individuals on an object or an area of interest and has a wide range of applications such as human-computer interaction, educational assessment, treatment of patients with attention disorders, and many more. Our method, Attention Flow, learns joint attention in an end-to-end fashion by using saliency-augmented attention maps and two novel convolutional attention mechanisms that determine to select relevant features and improve joint attention localization. We compare the effect of saliency maps and attention mechanisms and report quantitative and qualitative results on the detection and localization of joint attention in the VideoCoAtt dataset, which contains complex social scenes.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.