Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fundamental Limits of Prediction, Generalization, and Recursion: An Entropic-Innovations Perspective (2001.03813v4)

Published 12 Jan 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In this paper, we examine the fundamental performance limits of prediction, with or without side information. More specifically, we derive generic lower bounds on the $\mathcal{L}_p$ norms of the prediction errors that are valid for any prediction algorithms and for any data distributions. Meanwhile, we combine the entropic analysis from information theory and the innovations approach from prediction/estimation theory to characterize the conditions (in terms of, e.g., directed information or mutual information) to achieve the bounds. We also investigate the implications of the results in analyzing the fundamental limits of generalization in fitting (learning) problems from the perspective of prediction with side information, as well as the fundamental limits of recursive algorithms by viewing them as generalized prediction problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.