Papers
Topics
Authors
Recent
2000 character limit reached

Convergence rates for an inexact ADMM applied to separable convex optimization

Published 6 Jan 2020 in math.NA and cs.NA | (2001.02503v3)

Abstract: Convergence rates are established for an inexact accelerated alternating direction method of multipliers (I-ADMM) for general separable convex optimization with a linear constraint. Both ergodic and non-ergodic iterates are analyzed. Relative to the iteration number k, the convergence rate is O(1/k) in a convex setting and O(1/k2) in a strongly convex setting. When an error bound condition holds, the algorithm is 2-step linearly convergent. The I-ADMM is designed so that the accuracy of the inexact iteration preserves the global convergence rates of the exact iteration, leading to better numerical performance in the test problems.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.