Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analytic bundle structure on the idempotent manifold (2001.02352v1)

Published 8 Jan 2020 in math.DG, math.FA, and math.GT

Abstract: Let $X$ be a (real or complex) Banach space, and $\mathcal{I}(X)$ be the set of all (non-zero and non-identity) idempotents; i.e., bounded linear operators on $X$ whose squares equal themselves. We show that the Banach submanifold $\mathcal{I}(X)$ of $\mathcal{L}(X)$ is a locally trivial analytic affine-Banach bundle over the Grassmann manifold $\mathscr{G}(X)$, via the map $\kappa$ that sends $Q\in \mathcal{I}(X)$ to $Q(X)$, such that the affine-Banach space structure on each fiber is the one induced from $\mathcal{L}(X)$ (in particular, every fiber is an affine-Banach subspace of $\mathcal{L}(X)$). Using this, we show that if $K$ is a real Hilbert space, then the assignment $$(E,T)\mapsto T*\circ P_{E\bot} + P_{E}, \quad \text{ where } E\in \mathscr{G}(K)\text{ and } T\in \mathcal{L}(E,E\bot),$$ induces a bi-analytic bijection from the total space of the tangent bundle, $\mathbf{T}(\mathscr{G}(K))$, of $\mathscr{G}(K)$ onto $\mathcal{I}(K)$ (here, $E\bot$ is the orthogonal complement of $E$, $P_E\in \mathcal{L}(K)$ is the orthogonal projection onto $E$, and $T*$ is the adjoint of $T$). Notice that this bi-analytic bijection is an affine map on each tangent plane.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.