Papers
Topics
Authors
Recent
2000 character limit reached

Paraphrase Generation with Latent Bag of Words

Published 7 Jan 2020 in cs.CL and cs.LG | (2001.01941v1)

Abstract: Paraphrase generation is a longstanding important problem in natural language processing. In addition, recent progress in deep generative models has shown promising results on discrete latent variables for text generation. Inspired by variational autoencoders with discrete latent structures, in this work, we propose a latent bag of words (BOW) model for paraphrase generation. We ground the semantics of a discrete latent variable by the BOW from the target sentences. We use this latent variable to build a fully differentiable content planning and surface realization model. Specifically, we use source words to predict their neighbors and model the target BOW with a mixture of softmax. We use Gumbel top-k reparameterization to perform differentiable subset sampling from the predicted BOW distribution. We retrieve the sampled word embeddings and use them to augment the decoder and guide its generation search space. Our latent BOW model not only enhances the decoder, but also exhibits clear interpretability. We show the model interpretability with regard to \emph{(i)} unsupervised learning of word neighbors \emph{(ii)} the step-by-step generation procedure. Extensive experiments demonstrate the transparent and effective generation process of this model.\footnote{Our code can be found at \url{https://github.com/FranxYao/dgm_latent_bow}}

Citations (88)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.