Papers
Topics
Authors
Recent
2000 character limit reached

Plug-and-Play Rescaling Based Crowd Counting in Static Images

Published 6 Jan 2020 in cs.CV, cs.LG, and eess.IV | (2001.01786v1)

Abstract: Crowd counting is a challenging problem especially in the presence of huge crowd diversity across images and complex cluttered crowd-like background regions, where most previous approaches do not generalize well and consequently produce either huge crowd underestimation or overestimation. To address these challenges, we propose a new image patch rescaling module (PRM) and three independent PRM employed crowd counting methods. The proposed frameworks use the PRM module to rescale the image regions (patches) that require special treatment, whereas the classification process helps in recognizing and discarding any cluttered crowd-like background regions which may result in overestimation. Experiments on three standard benchmarks and cross-dataset evaluation show that our approach outperforms the state-of-the-art models in the RMSE evaluation metric with an improvement up to 10.4%, and possesses superior generalization ability to new datasets.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.