Papers
Topics
Authors
Recent
2000 character limit reached

Homotopy Poisson algebras, Maurer-Cartan elements and Dirac structures of CLWX 2-algebroids

Published 6 Jan 2020 in math.DG, math-ph, math.MP, and math.SG | (2001.01355v1)

Abstract: In this paper, we construct a homotopy Poisson algebra of degree 3 associated to a split Lie 2-algebroid, by which we give a new approach to characterize a split Lie 2-bialgebroid. We develop the differential calculus associated to a split Lie 2-algebroid and establish the Manin triple theory for split Lie 2-algebroids. More precisely, we give the notion of a strict Dirac structure and define a Manin triple for split Lie 2-algebroids to be a CLWX 2-algebroid with two transversal strict Dirac structures. We show that there is a one-to-one correspondence between Manin triples for split Lie 2-algebroids and split Lie 2-bialgebroids. We further introduce the notion of a weak Dirac structure of a CLWX 2-algebroid and show that the graph of a Maurer-Cartan element of the homotopy Poisson algebra of degree 3 associated to a split Lie 2-bialgebroid is a weak Dirac structure. Various examples including the string Lie 2-algebra, split Lie 2-algebroids constructed from integrable distributions and left-symmetric algebroids are given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.