Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Monitoring the Multivariate Coefficient of Variation using Run Rules Type Control Charts (2001.00996v2)

Published 3 Jan 2020 in stat.AP and stat.CO

Abstract: In practice, there are processes where the in-control mean and standard deviation of a quality characteristic is not stable. In such cases, the coefficient of variation (CV) is a more appropriate measure for assessing process stability. In this paper, we consider the statistical design of Run Rules based control charts for monitoring the CV of multivariate data. A Markov chain approach is used to evaluate the statistical performance of the proposed charts. The computational results show that the Run Rules based charts outperform significantly the standard Shewhart control chart. Moreover, by choosing an appropriate scheme, the Run Rules based charts perform better than the Rum Sum control chart for monitoring the multivariate CV. An example in a spring manufacturing process is given to illustrate the implementation of the proposed charts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.