Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text Segmentation (2001.00891v1)

Published 3 Jan 2020 in cs.CL

Abstract: Breaking down the structure of long texts into semantically coherent segments makes the texts more readable and supports downstream applications like summarization and retrieval. Starting from an apparent link between text coherence and segmentation, we introduce a novel supervised model for text segmentation with simple but explicit coherence modeling. Our model -- a neural architecture consisting of two hierarchically connected Transformer networks -- is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones. The proposed model, dubbed Coherence-Aware Text Segmentation (CATS), yields state-of-the-art segmentation performance on a collection of benchmark datasets. Furthermore, by coupling CATS with cross-lingual word embeddings, we demonstrate its effectiveness in zero-shot language transfer: it can successfully segment texts in languages unseen in training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Goran Glavaš (82 papers)
  2. Swapna Somasundaran (3 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.