Papers
Topics
Authors
Recent
2000 character limit reached

On simultaneous approximation of algebraic numbers (2001.00386v3)

Published 2 Jan 2020 in math.NT

Abstract: Let $\Gamma\subset \bar{\mathbb Q}{\times}$ be a finitely generated multiplicative group of algebraic numbers. Let $\alpha_1,\ldots,\alpha_r\in\bar{\mathbb Q}\times$ be algebraic numbers which are $\mathbb{Q}$-linearly independent and let $\epsilon>0$ be a given real number. One of the main results that we prove in this article is as follows; There exist only finitely many tuples $(u, q, p_1,\ldots,p_r)\in\Gamma\times\mathbb{Z}{r+1}$ with $d = [\mathbb{Q}(u):\mathbb{Q}]$ for some integer $d\geq 1$ satisfying $|\alpha_i q u|>1$, $\alpha_i q u$ is not a pseudo-Pisot number for some integer $i\in{1, \ldots, r}$ and $$ 0<|\alpha_j qu-p_j|<\frac{1}{H\epsilon(u)|q|{\frac{d}{r}+\varepsilon}} $$ for all integers $j = 1, 2,\ldots, r$, where $H(u)$ is the absolute Weil height. In particular, when $r =1$, this result was proved by Corvaja and Zannier in [3]. As an application of our result, we also prove a transcendence criterion which generalizes a result of Han\v{c}l, Kolouch, Pulcerov\'a and \v{S}t\v{e}pni\v{c}ka in [4]. The proofs rely on the clever use of the subspace theorem and the underlying ideas from the work of Corvaja and Zannier.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.