Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convolutional Quantum-Like Language Model with Mutual-Attention for Product Rating Prediction (1912.11720v1)

Published 25 Dec 2019 in cs.IR and cs.CL

Abstract: Recommender systems are designed to help mitigate information overload users experience during online shopping. Recent work explores neural LLMs to learn user and item representations from user reviews and combines such representations with rating information. Most existing convolutional-based neural models take pooling immediately after convolution and loses the interaction information between the latent dimension of convolutional feature vectors along the way. Moreover, these models usually take all feature vectors at higher levels as equal and do not take into consideration that some features are more relevant to this specific user-item context. To bridge these gaps, this paper proposes a convolutional quantum-like LLM with mutual-attention for rating prediction (ConQAR). By introducing a quantum-like density matrix layer, interactions between latent dimensions of convolutional feature vectors are well captured. With the attention weights learned from the mutual-attention layer, final representations of a user and an item absorb information from both itself and its counterparts for making rating prediction. Experiments on two large datasets show that our model outperforms multiple state-of-the-art CNN-based models. We also perform an ablation test to analyze the independent effects of the two components of our model. Moreover, we conduct a case study and present visualizations of the quantum probabilistic distributions in one user and one item review document to show that the learned distributions capture meaningful information about this user and item, and can be potentially used as textual profiling of the user and item.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.