Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Theory of the special displacement method for electronic structure calculations at finite temperature (1912.10929v1)

Published 23 Dec 2019 in cond-mat.mtrl-sci

Abstract: Calculations of electronic and optical properties of solids at finite temperature including electron-phonon interactions and quantum zero-point renormalization have enjoyed considerable progress during the past few years. Among the emerging methodologies in this area, we recently proposed a new approach to compute optical spectra at finite temperature including phonon-assisted quantum processes via a single supercell calculation [Zacharias and Giustino, Phys. Rev. B 94, 075125 (2016)]. In the present work we considerably expand the scope of our previous theory starting from a compact reciprocal space formulation, and we demonstrate that this improved approach provides accurate temperature-dependent band structures in three-dimensional and two-dimensional materials, using a special set of atomic displacements in a single supercell calculation. We also demonstrate that our special displacement reproduces the thermal ellipsoids obtained from X-ray crystallography, and yields accurate thermal averages of the mean-square atomic displacements. At a more fundamental level, we show that the special displacement represents an exact single-point approximant of an imaginary-time Feynman's path integral for the lattice dynamics. This enhanced version of the special displacement method enables non-perturbative, robust, and straightforward ab initio calculations of the electronic and optical properties of solids at finite temperature, and can easily be used as a post-processing step to any electronic structure code. Given its simplicity and numerical stability, the present development is suited for high-throughput calculations of band structures, quasiparticle corrections, optical spectra, and transport coefficients at finite temperature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.