Lieb, Entropy and Logarithmic uncertainty principles for the multivariate continuous quaternion Shearlet Transform (1912.08199v1)
Abstract: In this paper, we generalize the continuous quaternion shearlet transform on $\mathbb{R}{2}$ to $\mathbb{R}{2d}$, called the multivariate two sided continuous quaternion shearlet transform. Using the two sided quaternion Fourier transform, we derive several important properties such as (reconstruction formula, reproducing kernel, plancherel's formula, etc.). We present several example of the multivariate two sided continuous quaternion shearlet transform. We apply the multivariate two sided continuous quaternion shearlet transform properties and the two sided quaternion Fourier transform to establish Lieb uncertainty principle and the Logarithmic uncertainty principle. Last we study the Beckner's uncertainty principle in term of entropy for the multivariate two sided continuous quaternion shearlet transform.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.