Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global Double Field Theory is Higher Kaluza-Klein Theory (1912.07089v4)

Published 15 Dec 2019 in hep-th, math-ph, math.DG, and math.MP

Abstract: Kaluza-Klein Theory states that a metric on the total space of a principal bundle $P\rightarrow M$, if it is invariant under the principal action of $P$, naturally reduces to a metric together with a gauge field on the base manifold $M$. We propose a generalization of this Kaluza-Klein principle to higher principal bundles and higher gauge fields. For the particular case of the abelian gerbe of Kalb-Ramond field, this Higher Kaluza-Klein geometry provides a natural global formulation for Double Field Theory (DFT). In this framework the doubled space is the total space of a higher principal bundle and the invariance under its higher principal action is exactly a global formulation of the familiar strong constraint. The patching problem of DFT is naturally solved by gluing the doubled space with a higher group of symmetries in a higher category. Locally we recover the familiar picture of an ordinary para-Hermitian manifold equipped with Born geometry. Infinitesimally we recover the familiar picture of a higher Courant algebroid twisted by a gerbe (also known as Extended Riemannian Geometry). As first application we show that on a torus-compactified spacetime the Higher Kaluza-Klein reduction gives automatically rise to abelian T-duality, while on a general principal bundle it gives rise to non-abelian T-duality. As final application we define a natural notion of Higher Kaluza-Klein monopole by directly generalizing the ordinary Gross-Perry one. Then we show that under Higher Kaluza-Klein reduction, this monopole is exactly the NS5-brane on a $10d$ spacetime. If, instead, we smear it along a compactified direction we recover the usual DFT monopole on a $9d$ spacetime.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.