Papers
Topics
Authors
Recent
Search
2000 character limit reached

Outage Detection in Partially Observable Distribution Systems using Smart Meters and Generative Adversarial Networks

Published 10 Dec 2019 in eess.SY, cs.SY, and eess.SP | (1912.04992v1)

Abstract: In this paper, we present a novel data-driven approach to detect outage events in partially observable distribution systems by capturing the changes in smart meters' (SMs) data distribution. To achieve this, first, a breadth-first search (BFS)-based mechanism is proposed to decompose the network into a set of zones that maximize outage location information in partially observable systems. Then, using SM data in each zone, a generative adversarial network (GAN) is designed to implicitly extract the temporal-spatial behavior in normal conditions in an unsupervised fashion. After training, an anomaly scoring technique is leveraged to determine if real-time measurements indicate an outage event in the zone. Finally, to infer the location of the outage events in a multi-zone network, a zone coordination process is proposed to take into account the interdependencies of intersecting zones. We have provided analytical guarantees of performance for our algorithm using the concept of entropy, which is leveraged to quantify outage location information in multi-zone grids. The proposed method has been tested and verified on distribution feeder models with real SM data.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.