Papers
Topics
Authors
Recent
Search
2000 character limit reached

Low-rank representations with incoherent dictionary for face recognition

Published 10 Dec 2019 in cs.CV | (1912.04478v1)

Abstract: Face recognition remains a hot topic in computer vision, and it is challenging to tackle the problem that both the training and testing images are corrupted. In this paper, we propose a novel semi-supervised method based on the theory of the low-rank matrix recovery for face recognition, which can simultaneously learn discriminative low-rank and sparse representations for both training and testing images. To this end, a correlation penalty term is introduced into the formulation of our proposed method to learn an incoherent dictionary. Experimental results on several face image databases demonstrate the effectiveness of our method, i.e., the proposed method is robust to the illumination, expression and pose variations, as well as images with noises such as block occlusion or uniform noises.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.