Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-preserving data sharing via probabilistic modelling

Published 10 Dec 2019 in stat.ML, cs.CR, and cs.LG | (1912.04439v4)

Abstract: Differential privacy allows quantifying privacy loss resulting from accessing sensitive personal data. Repeated accesses to underlying data incur increasing loss. Releasing data as privacy-preserving synthetic data would avoid this limitation, but would leave open the problem of designing what kind of synthetic data. We propose formulating the problem of private data release through probabilistic modelling. This approach transforms the problem of designing the synthetic data into choosing a model for the data, allowing also including prior knowledge, which improves the quality of the synthetic data. We demonstrate empirically, in an epidemiological study, that statistical discoveries can be reliably reproduced from the synthetic data. We expect the method to have broad use in creating high-quality anonymized data twins of key data sets for research.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.