Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bounds on multiplicities of spherical spaces over finite fields -- the general case (1912.03694v1)

Published 8 Dec 2019 in math.RT

Abstract: Let $G$ be a connected reductive group scheme acting on a spherical scheme $X$. In the case where $G$ is of type $A_n$, Aizenbud and Avni proved the existence of a number $C$ such that the multiplicity $\dim\hom(\rho,\mathbb{C}[X(F)])$ is bounded by $C$, for any finite field $F$ and any irreducible representation $\rho$ of $G(F)$. In this paper, we generalize this result to the case where $G$ is a connected reductive group scheme over $\mathbb{Z}$, and prove Conjecture A of [1].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.