Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generative Synthesis of Insurance Datasets

Published 5 Dec 2019 in stat.AP, cs.LG, and q-fin.RM | (1912.02423v2)

Abstract: One of the impediments in advancing actuarial research and developing open source assets for insurance analytics is the lack of realistic publicly available datasets. In this work, we develop a workflow for synthesizing insurance datasets leveraging CTGAN, a recently proposed neural network architecture for generating tabular data. Applying the proposed workflow to publicly available data in the domains of general insurance pricing and life insurance shock lapse modeling, we evaluate the synthesized datasets from a few perspectives: machine learning efficacy, distributions of variables, and stability of model parameters. This workflow is implemented via an R interface to promote adoption by researchers and data owners.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.