Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global Łojasiewicz inequalities on comparing the rate of growth of polynomial functions

Published 2 Dec 2019 in math.AG | (1912.00633v2)

Abstract: We present a global version of the {\L}ojasiewicz inequality on comparing the rate of growth of two polynomial functions in the case the mapping defined by these functions is (Newton) non-degenerate at infinity. In addition, we show that the condition of non-degeneracy at infinity is generic in the sense that it holds in an open and dense semi-algebraic set of the entire space of input data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.