Papers
Topics
Authors
Recent
Search
2000 character limit reached

Factor Analysis on Citation, Using a Combined Latent and Logistic Regression Model

Published 2 Dec 2019 in stat.ML and cs.LG | (1912.00524v1)

Abstract: We propose a combined model, which integrates the latent factor model and the logistic regression model, for the citation network. It is noticed that neither a latent factor model nor a logistic regression model alone is sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represents the main technological trends (a.k.a., factors), and adds a sparse component that captures the remaining ad-hoc dependence. Parameter estimation is carried out through the construction of a joint-likelihood function of edges and properly chosen penalty terms. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards a low-dimensional latent component and a sparse graphical structure. Simulation results show that the proposed method works well in practical situations. The proposed method has been applied to a real application, which contains a citation network of statisticians (Ji and Jin, 2016). Some interesting findings are reported.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.