Eigen-AD: Algorithmic Differentiation of the Eigen Library (1911.12604v2)
Abstract: In this work we present useful techniques and possible enhancements when applying an Algorithmic Differentiation (AD) tool to the linear algebra library Eigen using our in-house AD by overloading (AD-O) tool dco/c++ as a case study. After outlining performance and feasibility issues when calculating derivatives for the official Eigen release, we propose Eigen-AD, which enables different optimization options for an AD-O tool by providing add-on modules for Eigen. The range of features includes a better handling of expression templates for general performance improvements, as well as implementations of symbolically derived expressions for calculating derivatives of certain core operations. The software design allows an AD-O tool to provide specializations to automatically include symbolic operations and thereby keep the look and feel of plain AD by overloading. As a showcase, dco/c++ is provided with such a module and its significant performance improvements are validated by benchmarks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.